학술논문
머신러닝과 통계 모형을 이용한 미술품 가격 예측
이용수 70
- 영문명
- Predicting Art Price using Machine Learning and Statistical Models
- 발행기관
- 한국자료분석학회
- 저자명
- 이준행(Junhaeng Lee) 권재한(Jae Han Kwon) 박진수(Jinsu Park)
- 간행물 정보
- 『Journal of The Korean Data Analysis Society (JKDAS)』Vol.26 No.1, 117~134쪽, 전체 18쪽
- 주제분류
- 자연과학 > 통계학
- 파일형태
- 발행일자
- 2024.02.29
4,960원
구매일시로부터 72시간 이내에 다운로드 가능합니다.
이 학술논문 정보는 (주)교보문고와 각 발행기관 사이에 저작물 이용 계약이 체결된 것으로, 교보문고를 통해 제공되고 있습니다.
국문 초록
미술 시장은 복합적인 문화, 경제, 사회적 특성으로 이루어져 있으며 최근 많은 관심을 받고 있다. 미술품 거래는 다양한 방식으로 이루어지며, 이중 미술품 경매는 큰 비중을 차지한다. 1920년 이후 출생한 Post-War and Contemporary Art 작가들의 경매 자료를 Artnet로부터 수집하여, 미술품 가격 예측 모형을 구현하였다. 기존 연구에서 일반적으로 사용되던 헤도닉 가격 모형 외에 회귀모형, 임의효과 모형, 정규화 모형, 트리 기반 모형, SVM 등 다양한 머신러닝 모형을 사용하여 가격 예측 성능을 비교하였다. 다양한 머신러닝 모형들을 비교하기 위해 두 가지 교차검증 방법을 사용하여 RMSE와 MAE를 비교하였다. 그 결과, 작가 정보를 활용하는 비선형 임의효과 모형이 우수한 성능을 보였다. 비선형 임의효과 모형을 사용하여 설명변수들이 가격에 미치는 영향을 분석하였다. 작가별로 시간의 흐름에 따른 다양한 패턴의 가격 곡선을 관찰할 수 있었다. 작가 정보를 활용하지 않는 머신러닝 모형 중에서는 Bagging이 가장 좋은 성능을 보였다. Bagging을 통해 변수 중요도를 구해본 결과 작품의 크기가 가격 예측에 있어 가장 영향력을 끼치는 것으로 나타났으며, 작가의 출생연도, 그림을 그린 방식, 그림을 그린 재질, 제작연도가 그 뒤를 이었다.
영문 초록
The art market is comprised of complex cultural, economic, and social characteristics and has recently received a lot of attention. Art transactions are carried out in a variety of ways, of which art auctions account for a large portion. We collected auction data on Post-War and Contemporary Art artists born after 1920 from Artnet and implemented an art price prediction model. In addition to the hedonic price model commonly used in existing studies, price prediction performance was compared using various machine learning models such as regression model, random effects model, regularization model, tree-based model, and SVM. To compare various machine learning models, RMSE and MAE were compared using two cross-validation methods. As a result, the nonlinear random effects model using author information showed the good performance. The impact of explanatory variables on price was analyzed using the optimal model. In addition, we were able to obtain price curves of various patterns according to the passage of time for each author. Among machine learning models that do not use author information, Bagging showed the best performance. As a result of measuring the importance of variables through Bagging, it was found that the size of the work had the most influence in predicting the price, followed by the artist's year of birth, the method of painting, the material with which the painting was painted, and the year of production.
목차
1. 서론
2. 연구자료
3. 모형 설명
4. 연구 결과
5. 결론 및 향후 연구
References
키워드
해당간행물 수록 논문
- 예측과정을 이용한 연령별 시차 분포 모형
- LSTM Auto Encoder 이용한 접근 이상 항적 탐지 모형
- 벼, 팥, 들깨, 땅콩 작물 재배 농가 조사를 위한 표본설계
- 프레일티 모형을 이용한 부산광역시 주요 암종별 생존율 비교 분석
- Mitigating Attentional Bias: The Impact of Perceived Social Self-Efficacy in Individuals with MMO Games Addiction Tendency
- 대용량 자료의 이항 분류에서의 충분 차원 축소를 위한 전향적 접근 방법
- 함수형 시공간 기법을 활용한 지표면 온도의 변화점 분석
- 텍스트 데이터와 재정데이터를 이용한 사회정책분야 예산 분석
- 딥러닝 기반 시계열 분석 모델의 불확실성 정량화 비교 연구
- Tobit 모형을 활용한 취업 만족도 결정요인 분석
- 이산확률분포의 표본 분위수 계산 방법에 관한 연구
- 한국과 미국의 대표 경제 학술지에 대한 토픽분석
- 네트워크 텍스트분석을 통한 치매대상자 인간중심돌봄 연구 경향 분석
- 임금근로자의 고용보험 사각지대와 미가입 특성 분석
- 모바일 동영상 광고 편익-비용 인식, 광고에 대한 태도, 모바일 동영상 이용량이 모바일 동영상 광고태도에 미치는 영향
- 한국 주택가격의 동태적 변화 연구
- 골관절염 여성노인의 건강관련 삶의 질 영향요인
- 스포츠 전공 학생-교수 간의 교환관계(LMX)가 학습성과에 미치는 영향
- 역할 과부하와 과업 수행의 관계
- 문해력과 어휘 접속 효율 간의 관련성
- 재개발·재건축 조합원의 조직몰입이 조직성과에 미치는 영향
- 머신러닝과 통계 모형을 이용한 미술품 가격 예측
- Determinants of Managerial Pay: The Relative Contribution of Compensation Predictors
- 투자심리와 현금전환주기 간의 관계
- 증권회사의 고객민원과 기업가치에 관한 연구
- 글로벌 손해보험산업의 성장성과 수익성 및 안정성에 관한 연구
- 노인의 우울 관련 요인
- 기업 소유 스포츠 구단의 비대면 ESG 활동 효과
- 자기통제고갈이 스마트폰 중독자의 스마트폰 사용욕구 증가에 미치는 영향
- 1인가구의 행복에 영향을 미치는 심리사회적 요인
- Journal of The Korean Data Analysis Society (JKDAS) Vol.26 No.1 표지, 목차
참고문헌
관련논문
자연과학 > 통계학분야 BEST
더보기자연과학 > 통계학분야 NEW
- Joint Modeling of Multi-Scale Stock Price using Hierarchical Hidden Markov Models
- Journal of The Korean Data Analysis Society (JKDAS) Vol.26 No.5 Contents
- 머신러닝 분류 모형을 이용한 Netflix 콘텐츠 시청 시간 예측
최근 이용한 논문
교보eBook 첫 방문을 환영 합니다!
신규가입 혜택 지급이 완료 되었습니다.
바로 사용 가능한 교보e캐시 1,000원 (유효기간 7일)
지금 바로 교보eBook의 다양한 콘텐츠를 이용해 보세요!