본문 바로가기

추천 검색어

실시간 인기 검색어

학술논문

A Copula Based Unsupervised Domain Adaptation for Image Classification

이용수 5

영문명
A Copula Based Unsupervised Domain Adaptation for Image Classification
발행기관
한국자료분석학회
저자명
Seungmin Lee Kyupil Yeon
간행물 정보
『Journal of The Korean Data Analysis Society (JKDAS)』Vol.26 No.2, 433~444쪽, 전체 12쪽
주제분류
자연과학 > 통계학
파일형태
PDF
발행일자
2024.04.30
4,240

구매일시로부터 72시간 이내에 다운로드 가능합니다.
이 학술논문 정보는 (주)교보문고와 각 발행기관 사이에 저작물 이용 계약이 체결된 것으로, 교보문고를 통해 제공되고 있습니다.

1:1 문의
논문 표지

국문 초록

영문 초록

In this paper, we present an unsupervised domain adaptation algorithm for image classification using principal component analysis (PCA) and Gaussian copula function alignment. The motivation of the proposed algorithm stems from the idea of CORAL algorithm which extracts domain invariant features by aligning the correlation structure between a source and a target domain. However, it suffers from the fact that highly skewed marginal distributions happen to distort the correlation structure so that it may cause a negative transfer. Therefore we utilize a copula function that enables us to analyze separately the dependency structure and the marginals by Sklar’s theorem. In particular, we propose to align the Gaussian copula correlations in the copula feature spaces instead of aligning the correlation matrices in the original space. Considering the extremely skewed distribution of SURF image features in Office-Caltech10 data set we apply PCA first in order to extract some skewness-mitigated principal features and then derive copula features to align for domain adaptation by using CORAL idea with Gaussian copula correlation matrices. The proposed method showed a good classification accuracy when applied to image classification problem in an unsupervised domain adaptation setting.

목차

1. Introduction
2. Review of Domain Adaptation and Copula Theory
3. Copula Based Unsupervised Domain Adaptation
4. Data Analysis
5. Conclusions
References

키워드

해당간행물 수록 논문

참고문헌

교보eBook 첫 방문을 환영 합니다!

신규가입 혜택 지급이 완료 되었습니다.

바로 사용 가능한 교보e캐시 1,000원 (유효기간 7일)
지금 바로 교보eBook의 다양한 콘텐츠를 이용해 보세요!

교보e캐시 1,000원
TOP
인용하기
APA

Seungmin Lee,Kyupil Yeon. (2024).A Copula Based Unsupervised Domain Adaptation for Image Classification. Journal of The Korean Data Analysis Society (JKDAS), 26 (2), 433-444

MLA

Seungmin Lee,Kyupil Yeon. "A Copula Based Unsupervised Domain Adaptation for Image Classification." Journal of The Korean Data Analysis Society (JKDAS), 26.2(2024): 433-444

결제완료
e캐시 원 결제 계속 하시겠습니까?
교보 e캐시 간편 결제