학술논문
VQA 기반의 확률론적 시각적 질문 답변 모델
이용수 60
- 영문명
- A Probabilistic Visual Question Answering Model Based VQA
- 발행기관
- 한국컴퓨터게임학회
- 저자명
- Manva Trivedi Sabah Mohammed
- 간행물 정보
- 『한국컴퓨터게임학회논문지』제35권 3호, 65~73쪽, 전체 9쪽
- 주제분류
- 공학 > 컴퓨터학
- 파일형태
- 발행일자
- 2022.09.30
4,000원
구매일시로부터 72시간 이내에 다운로드 가능합니다.
이 학술논문 정보는 (주)교보문고와 각 발행기관 사이에 저작물 이용 계약이 체결된 것으로, 교보문고를 통해 제공되고 있습니다.

국문 초록
시각적 데이터는 도처에 존재하며 자연어는 인간이 이해할 수 있는 의사소통 수단이다. VQA(Visual Question Answering)는 이미지를 이미지에 대한 입력과 질문으로 취하고 복잡한 추론을 사용하여 자연어 답변을 생성하는 시스템이다. 따라서, VQA는 답을 예측하기 위해 이미지에 대한 자세한 이해와 복잡한 이유가 필요하다. 멀티모달 구조와 가능한 실제 구현을 고려할 때, VQA는 인공지능에게 매우 중요한 과제이다. VQA를 위한 심층 신경망에 사용되는 아키텍처와 하이퍼 파라미터는 결과에 큰 영향을 미친다. 이 프로젝트는 이미지 특징을 추출하기 위해 사전 훈련된 모델(VGGNet)과 단어를 내장하기 위해 Word2Vec를 도입하고 질문에서 단어 특징을 얻기 위해 LSTM을 도입하고 결과를 결합한 후 가장 높은 확률을 가진 답을 예측한다.
영문 초록
Visual data is present everywhere and natural language is a way of communication understandable to humans. Visual Question Answering (VQA) is a system which takes image as an input and a question about the image and generates a natural language answer using complex reasoning. Thus, a VQA needs detailed understanding of the image and complex reason to predict the answer. Given its multimodal structure and possible real-world implementations, VQA is a challenge of critical importance for artificial intelligence. The architectures and hyperparameters used in deep neural networks for VQA have a big impact on their results. This project introduces a pretrained model (VGGNet) to extract image features and Word2Vec to embed the words and LSTM to get word features from the question and after combining the results will predict the answer having highest probability.
목차
1. Introduction
2. Literature Review
3. Research Methodology
4. Analysis and Evaluation
5. Conclusion
References
키워드
해당간행물 수록 논문
참고문헌
관련논문
공학 > 컴퓨터학분야 BEST
- 지도서비스를 이용한 위치 기반 관광 빅데이터의 시각화
- 청소년들의 스마트폰 중독예방을 위한 이야기치료 집단상담 프로그램 개발
- 공서비스 공급 관점에서 살펴본 비의료 건강관리서비스 인증 시범사업과 의료민영화 논쟁
공학 > 컴퓨터학분야 NEW
- 스마트미디어저널 제14권 제2호 목차
- A Study on Dataset Development and Model Vulnerability to Backdoors
- Ransomware Detection Using Deep Q-Network and L2PGD Attack Analysis on a Custom Dataset
최근 이용한 논문
교보eBook 첫 방문을 환영 합니다!
신규가입 혜택 지급이 완료 되었습니다.
바로 사용 가능한 교보e캐시 1,000원 (유효기간 7일)
지금 바로 교보eBook의 다양한 콘텐츠를 이용해 보세요!
