학술논문
머신러닝을 이용한 한국 지역사회 거주 노인의 낙상 예측 모형 구축: 2차 분석 연구
이용수 25
- 영문명
- Development of a fall prediction model for community-dwelling older adults in South Korea using machine learning: a secondary data analysis
- 발행기관
- 한국기초간호학회
- 저자명
- 서민희 정혜실 김주리
- 간행물 정보
- 『Journal of Korean Biological Nursing Science』제26권 제4호, 288~299쪽, 전체 12쪽
- 주제분류
- 의약학 > 의학일반
- 파일형태
- 발행일자
- 2024.11.30
4,240원
구매일시로부터 72시간 이내에 다운로드 가능합니다.
이 학술논문 정보는 (주)교보문고와 각 발행기관 사이에 저작물 이용 계약이 체결된 것으로, 교보문고를 통해 제공되고 있습니다.
국문 초록
Purpose: This study aimed to develop a fall prediction model for community-dwelling older adults using machine learning. Methods: The present study was conducted with a secondary data analysis that used data from the 2020 national survey of older Koreans. Among 10,097 participants, data 177 were excluded due to incompleteness and 9,920 were included in the final analysis. Because of data imbalance, upsampling was performed to increase the number of individuals who fell. Forty-five independent variables for fall prediction were selected based on the fall risk factors from previous studies and univariate statistical analysis. The data were split into training and testing sets at an 80:20 ratio. Three machine learning algorithms—logistic regression, random forest, and artificial neural network—were used to develop a fall prediction model. Results: The random forest model outperformed the others, with an area under the curve of .91, accuracy of .94, precision of .94, recall of .74, and F1 score of .83. An analysis of feature importance revealed that satisfaction with health condition, visual difficulty, instrumental activities of daily living, performance of 400m walk, and cognitive ability were the top five features for fall prediction. Conclusion: The fall prediction model developed using machine learning demonstrated high model performance, implying its suitability for use as a primary screening tool for fall risk. Subjective satisfaction with one’s health should be considered as an important factor in predicting falls in community-dwelling older adults. It is necessary for community health nurses to reinforce positive health awareness by continuous disease management and physical function improvement for older adults to prevent falls.
영문 초록
목차
서론
연구 방법
연구 결과
논의
결론
REFERENCES
해당간행물 수록 논문
- 한국 응급실 간호사의 임종간호 태도에 미치는 영향요인: 횡단적 조사 연구
- Development and validation of machine learning models to predict prediabetes using dietary intake data in young adults in Korea: a cross-sectional study
- Effects of environmental enrichment and caloric restriction on hippocampal changes in early adult rats
- 국내 치매안심센터를 이용하는 치매노인 가족돌봄자의 돌봄부담 영향요인: 횡단적 서술적 조사연구
- Factors influencing metabolic syndrome in adult workers: an analysis of data from the 2022 Korea National Health and Nutrition Examination Survey
- The effects of ear acupressure therapy on obstetric and gynecological pain in women: a systematic review and metaanalysis
- 머신러닝을 이용한 한국 지역사회 거주 노인의 낙상 예측 모형 구축: 2차 분석 연구
- Comparative effects of music therapy and aromatherapy on stress, quality of life, and happiness among shift nurses in Korea: a randomized controlled trial
- Improving clinical reasoning competency and communication skills using virtual simulation-based learning focused on a pathophysiological approach in Korea: a quasi-experimental study
- Thermoelectric tourniquet-assisted thermotherapy and cryotherapy for pain, regional blood flow, and satisfaction with intravenous injections among hospitalized patients in Korea: a randomized controlled trial
- The effects of nurses’ spiritual well-being and death awareness on end-of-life nursing attitudes in Korea: a cross-sectional study
참고문헌
관련논문
의약학 > 의학일반분야 BEST
- 간호대학생의 인공지능 활용 간호수행 자신감에 영향을 미치는 요인
- 지역사회 인지저하 전·후기 노인의 건강 및 돌봄 요구 실태
- 국내 의료기관의 환자안전사고 관련 요인 분석: 2019-2022년 환자안전보고 데이터 활용 이차분석 연구
의약학 > 의학일반분야 NEW
- Erratum: Experiences of community-dwelling frail older adults with diabetes: Using phenomenological methods
- 재가장기요양서비스 이용 노인의 삶의 의미 영향요인: 서술적 단면 조사 연구
- 요양병원 간호사의 낙상예방행위 영향요인: 서술적 조사연구
최근 이용한 논문
교보eBook 첫 방문을 환영 합니다!
신규가입 혜택 지급이 완료 되었습니다.
바로 사용 가능한 교보e캐시 1,000원 (유효기간 7일)
지금 바로 교보eBook의 다양한 콘텐츠를 이용해 보세요!