학술논문
공극 규모 반응성 운송 모델링의 연산 효율 향상을 위한 지화학 반응 대리 인공신경망 모형 개발
이용수 0
- 영문명
- Artificial Neural Network Surrogate Model for Geochemical Calculations in Pore-Scale Reactive Transport Simulations
- 발행기관
- 대한자원환경지질학회
- 저자명
- 김예훈(Yehoon Kim) 김호림(Ho-rim Kim) 정희원(Heewon Jung)
- 간행물 정보
- 『자원환경지질』57권 5호, 487~497쪽, 전체 11쪽
- 주제분류
- 자연과학 > 지질학
- 파일형태
- 발행일자
- 2024.10.31
4,120원
구매일시로부터 72시간 이내에 다운로드 가능합니다.
이 학술논문 정보는 (주)교보문고와 각 발행기관 사이에 저작물 이용 계약이 체결된 것으로, 교보문고를 통해 제공되고 있습니다.
국문 초록
공극 규모 반응성 운송 모델링은 유체 유동과 지화학 반응의 결합이 일어나는 마이크로미터 수준의 프로세스 분석을 수행하는 연구 기법이다. 이는 지질매체 내에서 일어나는 복잡한 물질 거동을 정밀하게 고찰할 수 있게 하는 강력한 연구 기법이지만, 매우 높은 연산 자원이 필요하다는 한계가 존재한다. 이러한 한계를 극복하기 위하여, 본 연구에서는 반응성 운송 모델링에서 대부분의 연산 자원을 소모하는 지화학 반응을 대체하는 인공신경망 기반의 대리모형을 개발하였다. 공극 규모에서는 광물의 공간적 분포에 따라 독립적 지화학 반응 연산을 수행한다는 점에 착안하여 본 연구에서는 광물의 용해/침전과 용질의 흡착 반응을 동시에 고려하는 통합모형(CM)과 독립적으로 고려하는 독립모형(IM)의 두 가지 대리모형의 정확성과 효율을 비교하였다. 평균 제곱 오차(MSE), 결정 계수(R2), 질량 균형 오차(mass balance error) 등의 지표를 통해 모형들을 비교한 결과, 통합모형은 공극 규모에서 발생하는 순차적 반응에서 성능이 저하된 반면, 독립모형은 같은 조건에서도 높은 정확도를 유지하며 복잡한 지화학 반응을 효과적으로 처리하였다. 이 결과는 지화학 반응 대리모형 구축에 있어, 복잡한 지화학 반응 네트워크를 포괄하는 단일모형을 매번 새롭게 구축할 필요 없이, 개별 지화학 반응을 학습한 신경망 모형의 합성을 통하여 공극 규모의 지화학 반응을 대체할 수 있을 것으로 기대된다.
영문 초록
Pore-scale reactive transport modeling is a powerful tool used to analyze micro-scale processes where fluid flow and geochemical reactions occur. Despite its capability to examine complex hydrological and geochemical system behavior, the high computational demands for these simulations present a significant limitation. To overcome this challenge, this study evaluated artificial neural network (ANN)-based surrogate models to replace geochemical reaction calculations, which consume the majority of computational time in reactive transport simulations. The study considered two ANN models: a combined model (CM) that simultaneously accounts for mineral dissolution/precipitation and solute adsorption reactions, and an independent model (IM) that treats these reactions independently. The performance of these models was compared using metrics, including mean squared error (MSE), coefficient of determination (R²), and mass balance errors. Results indicate that IM demonstrates superior accuracy compared to CM. This finding suggests that instead of constructing a single complex model for the entire geochemical reaction network, pore-scale geochemical reactions can be effectively replaced by combining individual neural network models trained for specific reactions.
목차
1. 서 론
2. 연구 방법
3. 결 과
4. 결 론
사 사
References
키워드
해당간행물 수록 논문
- 인공위성 원격탐사 기반 메탄 배출 모니터링 기술 현황
- 공극 규모 반응성 운송 모델링의 연산 효율 향상을 위한 지화학 반응 대리 인공신경망 모형 개발
- Denoising Laplace-domain Seismic Wavefields using Deep Learning
- 폐광산 지반안정성 조사용 시추주상도의 분류 및 데이터베이스화를 위한 딥러닝 및 광학문자인식 기술의 적용
- 한국대지 XRD 실험자료 대상 k-평균 군집화 모델 적용성 분석
- 비소 오염토양의 효과적 정화를 위한 열수합성 마그네슘알루미늄-이중층수산화물/왕겨 하이드로차 나노복합체의 형성 및 이화학적 특성에 미치는 에이징 효과 규명
- 지질과학 분야 한국어 대규모 언어 모델 개발
- 광물자원 탐사를 위한 지구화학적 접근
- 딥러닝 기반 지하수위 예측 모델 개발에 있어 데이터 부족 문제 해결을 위한 전이학습의 응용
- 도심 습지의 생태계 서비스와 탄소 흡수 평가: 대전 갑천습지 사례 연구
- 몽골 울란바토르 복드칸 궁전 및 초이진 라마사원 벽돌과 기와의 재료학적 특성 및 고고과학적 의미
- 활석, 질석, 해포석, 사문석 등 석면함유 가능성이 있는 광물 함유 제품의 석면 분석 및 광물학적 특성
- Geochemical Characterisation of Magnesian Intrusives within High Grade Migmatite Gneiss Terrain: Insight from Plutons around Iwo Area, Southwest Nigeria
참고문헌
관련논문
자연과학 > 지질학분야 BEST
- 한국의 전기차 사용 후 배터리 재활용 및 재사용 효과 분석 연구
- 이산화탄소 포집/저장/활용 기술 특허 동향 분석
- 산불에 의한 지하수 토양 환경오염과 방사성 물질 분포 및 거동 영향 고찰
자연과학 > 지질학분야 NEW
- 인공위성 원격탐사 기반 메탄 배출 모니터링 기술 현황
- 공극 규모 반응성 운송 모델링의 연산 효율 향상을 위한 지화학 반응 대리 인공신경망 모형 개발
- Denoising Laplace-domain Seismic Wavefields using Deep Learning
최근 이용한 논문
교보eBook 첫 방문을 환영 합니다!
신규가입 혜택 지급이 완료 되었습니다.
바로 사용 가능한 교보e캐시 1,000원 (유효기간 7일)
지금 바로 교보eBook의 다양한 콘텐츠를 이용해 보세요!