본문 바로가기

추천 검색어

실시간 인기 검색어

학술논문

이산 Wavelet 변환을 이용한 딥러닝 기반 잡음제거기

이용수 38

영문명
Noise Canceler Based on Deep Learning Using Discrete Wavelet Transform
발행기관
한국전자통신학회
저자명
이행우(Haeng-Woo Lee)
간행물 정보
『한국전자통신학회 논문지』제18권 제6호, 1103~1108쪽, 전체 6쪽
주제분류
공학 > 전자/정보통신공학
파일형태
PDF
발행일자
2023.12.31
4,000

구매일시로부터 72시간 이내에 다운로드 가능합니다.
이 학술논문 정보는 (주)교보문고와 각 발행기관 사이에 저작물 이용 계약이 체결된 것으로, 교보문고를 통해 제공되고 있습니다.

1:1 문의
논문 표지

국문 초록

본 논문에서는 음향신호의 배경잡음을 감쇠하기 위한 새로운 알고리즘을 제안한다. 이 알고리즘은 이산 웨이블릿 변환(DWT: Discrete Wavelet Transform) 후 기존의 적응필터를 대신 FNN(: Full-connected Neural Network) 심층학습 알고리즘을 이용하여 잡음감쇠 성능을 개선하였다. 입력신호를 단시간 구간별로 웨이블릿 변환한 다음 1024-1024-512-neuron FNN 딥러닝 모델을 이용하여 잡음이 포함된 단일입력 음성신호로부터 잡음을 제거한다. 이는 시간영역 음성신호를 잡음특성이 잘 표현되도록 시간-주파수영역으로 변환하고 변환 파라미터에 대해 순수 음성신호의 변환 파라미터를 이용한 지도학습을 통하여 잡음환경에서 효과적으로 음성을 예측한다. 본 연구에서 제안한 잡음감쇠시스템의 성능을 검증하기 위하여 Tensorflow와 Keras 라이브러리를 사용한 시뮬레이션 프로그램을 작성하고 모의실험을 수행하였다. 실험 결과, 제안한 심층학습 알고리즘을 사용하면 기존의 적응필터를 사용하는 경우보다 30%, STFT(: Short-Time Fourier Transform) 변환을 사용하는 경우보다는 20%의 평균자승오차(MSE: Mean Square Error) 개선효과를 얻을 수 있었다.

영문 초록

In this paper, we propose a new algorithm for attenuating the background noises in acoustic signal. This algorithm improves the noise attenuation performance by using the FNN(: Full-connected Neural Network) deep learning algorithm instead of the existing adaptive filter after wavelet transform. After wavelet transforming the input signal for each short-time period, noise is removed from a single input audio signal containing noise by using a 1024-1024-512-neuron FNN deep learning model. This transforms the time-domain voice signal into the time-frequency domain so that the noise characteristics are well expressed, and effectively predicts voice in a noisy environment through supervised learning using the conversion parameter of the pure voice signal for the conversion parameter. In order to verify the performance of the noise reduction system proposed in this study, a simulation program using Tensorflow and Keras libraries was written and a simulation was performed. As a result of the experiment, the proposed deep learning algorithm improved Mean Square Error (MSE) by 30% compared to the case of using the existing adaptive filter and by 20% compared to the case of using the STFT(: Short-Time Fourier Transform) transform effect was obtained.

목차

Ⅰ. 서 론
Ⅱ. 이산 Wavelet 변환
Ⅲ. 잡음제거를 위한 변환영역 블록 딥러닝 알고리즘
Ⅳ. 모의실험 및 분석
Ⅴ. 결 론
References

키워드

해당간행물 수록 논문

참고문헌

교보eBook 첫 방문을 환영 합니다!

신규가입 혜택 지급이 완료 되었습니다.

바로 사용 가능한 교보e캐시 1,000원 (유효기간 7일)
지금 바로 교보eBook의 다양한 콘텐츠를 이용해 보세요!

교보e캐시 1,000원
TOP
인용하기
APA

이행우(Haeng-Woo Lee). (2023).이산 Wavelet 변환을 이용한 딥러닝 기반 잡음제거기. 한국전자통신학회 논문지, 18 (6), 1103-1108

MLA

이행우(Haeng-Woo Lee). "이산 Wavelet 변환을 이용한 딥러닝 기반 잡음제거기." 한국전자통신학회 논문지, 18.6(2023): 1103-1108

결제완료
e캐시 원 결제 계속 하시겠습니까?
교보 e캐시 간편 결제