본문 바로가기

추천 검색어

실시간 인기 검색어

학술논문

딥러닝 알고리즘 기반 교통법규 위반 공익신고 영상 분석 시스템

이용수 87

영문명
Analysis System for Public Interest Report Video of Traffic Law Violation based on Deep Learning Algorithms
발행기관
한국전자통신학회
저자명
최민성 문미경
간행물 정보
『한국전자통신학회 논문지』제18권 제1호, 63~69쪽, 전체 7쪽
주제분류
공학 > 전자/정보통신공학
파일형태
PDF
발행일자
2023.02.28
4,000

구매일시로부터 72시간 이내에 다운로드 가능합니다.
이 학술논문 정보는 (주)교보문고와 각 발행기관 사이에 저작물 이용 계약이 체결된 것으로, 교보문고를 통해 제공되고 있습니다.

1:1 문의
논문 표지

국문 초록

고화질 블랙박스의 확산과 ‘스마트 국민제보’, ‘안전신문고’ 등 모바일 애플리케이션의 도입에 따른 영향으로 교통법규 위반 공익신고가 급증하였으며, 이로 인해 이를 처리할 담당 경찰 인력은 부족한 상황이 되었다. 본 논문에서는 교통법규 위반 공익신고 영상 중, 가장 많은 비중을 차지하는 차선위반에 대해 딥러닝 알고리즘을 활용하여 자동 검출할 수 있는 시스템의 개발내용에 관해 기술한다. 본 연구에서는 YOLO 모델과 Lanenet 모델을 사용하여 차량과 실선 객체를 인식하고 deep sort 알고리즘을 사용하여 객체를 개별로 추적하는 방법, 그리고 차량 객체의 바운딩 박스와 실선 객체의 범위가 겹치는 부분을 인식하여 진로변경 위반을 검출하는 방법을 제안한다. 본 시스템을 통해 신고된 영상에 대해 교통법규 위반 여부를 자동 분석해줌으로써 담당 경찰 인력 부족난을 해소할 수 있을 것으로 기대한다.

영문 초록

Due to the spread of high-definition black boxes and the introduction of mobile applications such as 'Smart Citizens Report' and 'Safety Report', the number of public interest reports for violations of Traffic Law has increased rapidly, resulting in shortage of police personnel to handle them. In this paper, we describe the development of a system that can automatically detect lane violations which account for the largest proportion of public interest reporting videos for violations of traffic laws, using deep learning algorithms. In this study, a method for recognizing a vehicle and a solid line object using a YOLO model and a Lanenet model, a method for tracking an object individually using a deep sort algorithm, and a method for detecting lane change violations by recognizing the overlapping range of a vehicle object's bounding box and a solid line object are described. Using this system, it is expected that the shortage of police personnel in charge will be resolved.

목차

Ⅰ. 서 론
Ⅱ. 관련 연구
Ⅲ. 시스템 개발
Ⅳ. 모델 평가 및 테스트
Ⅴ. 결 론
References

키워드

해당간행물 수록 논문

참고문헌

교보eBook 첫 방문을 환영 합니다!

신규가입 혜택 지급이 완료 되었습니다.

바로 사용 가능한 교보e캐시 1,000원 (유효기간 7일)
지금 바로 교보eBook의 다양한 콘텐츠를 이용해 보세요!

교보e캐시 1,000원
TOP
인용하기
APA

최민성,문미경. (2023).딥러닝 알고리즘 기반 교통법규 위반 공익신고 영상 분석 시스템. 한국전자통신학회 논문지, 18 (1), 63-69

MLA

최민성,문미경. "딥러닝 알고리즘 기반 교통법규 위반 공익신고 영상 분석 시스템." 한국전자통신학회 논문지, 18.1(2023): 63-69

결제완료
e캐시 원 결제 계속 하시겠습니까?
교보 e캐시 간편 결제