본문 바로가기

추천 검색어

실시간 인기 검색어

학술논문

Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study

이용수 0

영문명
발행기관
대한신경정신의학회
저자명
Xing-Xuan Dong Jian-Hua Liu Tian-Yang Zhang Chen-Wei Pan Chun-Hua Zhao Yi-Bo Wu Dan-Dan Chen
간행물 정보
『Psychiatry Investigation』제22권 제3호, 267~278쪽, 전체 12쪽
주제분류
의약학 > 정신과학
파일형태
PDF
발행일자
2025.03.18
4,240

구매일시로부터 72시간 이내에 다운로드 가능합니다.
이 학술논문 정보는 (주)교보문고와 각 발행기관 사이에 저작물 이용 계약이 체결된 것으로, 교보문고를 통해 제공되고 있습니다.

1:1 문의
논문 표지

국문 초록

Objective Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic. Methods Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC). Results LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models. Conclusion Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.

영문 초록

목차

INTRODUCTION
METHODS
RESULTS
DISCUSSION

키워드

해당간행물 수록 논문

참고문헌

교보eBook 첫 방문을 환영 합니다!

신규가입 혜택 지급이 완료 되었습니다.

바로 사용 가능한 교보e캐시 1,000원 (유효기간 7일)
지금 바로 교보eBook의 다양한 콘텐츠를 이용해 보세요!

교보e캐시 1,000원
TOP
인용하기
APA

Xing-Xuan Dong,Jian-Hua Liu,Tian-Yang Zhang,Chen-Wei Pan,Chun-Hua Zhao,Yi-Bo Wu,Dan-Dan Chen. (2025).Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study. Psychiatry Investigation, 22 (3), 267-278

MLA

Xing-Xuan Dong,Jian-Hua Liu,Tian-Yang Zhang,Chen-Wei Pan,Chun-Hua Zhao,Yi-Bo Wu,Dan-Dan Chen. "Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study." Psychiatry Investigation, 22.3(2025): 267-278

결제완료
e캐시 원 결제 계속 하시겠습니까?
교보 e캐시 간편 결제