본문 바로가기

추천 검색어

실시간 인기 검색어

학술논문

Machine Learning Models to Identify Individuals With Imminent Suicide Risk Using a Wearable Device: A Pilot Study

이용수 0

영문명
발행기관
대한신경정신의학회
저자명
Jumyung Um Jongsu Park Dong Eun Lee Jae Eun Ahn Ji Hyun Baek
간행물 정보
『Psychiatry Investigation』제22권 제2호, 156~166쪽, 전체 11쪽
주제분류
의약학 > 정신과학
파일형태
PDF
발행일자
2025.02.17
4,120

구매일시로부터 72시간 이내에 다운로드 가능합니다.
이 학술논문 정보는 (주)교보문고와 각 발행기관 사이에 저작물 이용 계약이 체결된 것으로, 교보문고를 통해 제공되고 있습니다.

1:1 문의
논문 표지

국문 초록

Objective We aimed to determine whether individuals at immediate risk of suicide could be identified using data from a commercially available wearable device. Methods Thirty-nine participants experiencing acute depressive episodes and 20 age- and sex-matched healthy controls wore a commercially available wearable device (Galaxy Watch Active2) for two months. We collected data on activities, sleep, and physiological metrics like heart rate and heart rate variability using the wearable device. Participants rated their mood spontaneously twice daily on a Likert scale displayed on the device. Mood ratings by clinicians were performed at weeks 0, 2, 4, and 8. The suicide risk was assessed using the Hamilton Depression Rating Scale’s suicide item score (HAMD-3). We developed two predictive models using machine learning: a single-level model that processed all data simultaneously to identify those at immediate suicide risk (HAMD-3 scores ≥1) and a multi-level model. We compared the predictions of imminent suicide risk from both models. Results Both the single-step and multi-step models effectively predicted imminent suicide risk. The multi-step model outperformed the single-step model in predicting imminent suicide risk with area under the curve scores of 0.89 compared to 0.88. In the multi-step model, the HAMD total score and heart rate variability were most significant, whereas in the single-step model, the HAMD total score and diagnosis were key predictors. Conclusion Wearable devices are a promising tool for identifying individuals at immediate risk of suicide. Future research with more refined temporal resolution is recommended.

영문 초록

목차

INTRODUCTION
METHODS
RESULTS
DISCUSSION
REFERENCES

키워드

해당간행물 수록 논문

참고문헌

교보eBook 첫 방문을 환영 합니다!

신규가입 혜택 지급이 완료 되었습니다.

바로 사용 가능한 교보e캐시 1,000원 (유효기간 7일)
지금 바로 교보eBook의 다양한 콘텐츠를 이용해 보세요!

교보e캐시 1,000원
TOP
인용하기
APA

Jumyung Um,Jongsu Park,Dong Eun Lee,Jae Eun Ahn,Ji Hyun Baek. (2025).Machine Learning Models to Identify Individuals With Imminent Suicide Risk Using a Wearable Device: A Pilot Study. Psychiatry Investigation, 22 (2), 156-166

MLA

Jumyung Um,Jongsu Park,Dong Eun Lee,Jae Eun Ahn,Ji Hyun Baek. "Machine Learning Models to Identify Individuals With Imminent Suicide Risk Using a Wearable Device: A Pilot Study." Psychiatry Investigation, 22.2(2025): 156-166

결제완료
e캐시 원 결제 계속 하시겠습니까?
교보 e캐시 간편 결제