본문 바로가기

추천 검색어

실시간 인기 검색어

학술논문

Reliability analysis of automated Cobb angle measurement using artificial intelligence models in scoliosis patients

이용수 0

영문명
발행기관
조선대학교 의학연구원
저자명
Jeong Eun Moon Yong Jin Cho
간행물 정보
『Medical Biological Science and Engineering』제8권 제1호, 14~19쪽, 전체 6쪽
주제분류
의약학 > 기타의약학
파일형태
PDF
발행일자
2024.12.31
4,000

구매일시로부터 72시간 이내에 다운로드 가능합니다.
이 학술논문 정보는 (주)교보문고와 각 발행기관 사이에 저작물 이용 계약이 체결된 것으로, 교보문고를 통해 제공되고 있습니다.

1:1 문의
논문 표지

국문 초록

The measurement of the Cobb angle is essential for diagnosing scoliosis and monitoring its pro-gression, especially in adolescent idiopathic scoliosis. This study evaluates the reliability and efficiency of DEEP:SPINE-AS-01® developed by DEEPNOID, a Korean Ministry of Food and Drug Safety certified AI software, in automated Cobb angle measurement compared to manual methods. Fifty-two radiographs were initially collected, and 48 met inclusion criteria for analysis. Two observers, one an experienced spine orthopedic specialist and the other a non-specialist, performed manual measurements, while the AI module provided automated assessments. Intra- and inter-observer reliability were analyzed using intraclass correlation coefficients. The AI demonstrated excellent agreement with manual measurements, with ICCs above 0.98 for inter-observer comparisons. The non-specialist observer required more time for manual measurements (mean 53 minutes) than the specialist (mean 36 minutes), highlighting the manual method’s dependence on experi-ence. DEEP:SPINE-AS-01® reduced measurement variability and time, offering results in de-grees with high reproducibility. Despite minor endplate selection differences, the AI achieved robust agreement with human observers and standardized the measurement process. This study underscores DEEP:SPINE-AS-01® potential to enhance clinical workflow by auto-mating a traditionally time-intensive and error-prone process. Its accuracy, efficiency, and re-producibility suggest its value in routine scoliosis evaluation, reducing the burden on physicians and improving patient care. Future studies with larger datasets and diverse populations could further validate its clinical utility.

영문 초록

목차

INTRODUCTION
MATERIAL AND METHODS
RESULTS
DISCUSSION
REFERENCES

키워드

해당간행물 수록 논문

참고문헌

교보eBook 첫 방문을 환영 합니다!

신규가입 혜택 지급이 완료 되었습니다.

바로 사용 가능한 교보e캐시 1,000원 (유효기간 7일)
지금 바로 교보eBook의 다양한 콘텐츠를 이용해 보세요!

교보e캐시 1,000원
TOP
인용하기
APA

Jeong Eun Moon,Yong Jin Cho. (2024).Reliability analysis of automated Cobb angle measurement using artificial intelligence models in scoliosis patients. Medical Biological Science and Engineering, 8 (1), 14-19

MLA

Jeong Eun Moon,Yong Jin Cho. "Reliability analysis of automated Cobb angle measurement using artificial intelligence models in scoliosis patients." Medical Biological Science and Engineering, 8.1(2024): 14-19

결제완료
e캐시 원 결제 계속 하시겠습니까?
교보 e캐시 간편 결제