본문 바로가기

추천 검색어

실시간 인기 검색어

학술논문

Learnable Sobel Filter and Attention-based Deep Learning Framework for Early Forest Fire Detection

이용수 0

영문명
발행기관
한국인공지능학회
저자명
Sehun KIM Kyeongseok JANG Dongwoo LEE Seungwon CHO Seunghyun LEE Kwangchul SON
간행물 정보
『인공지능연구』Vol.12 No. 4, 27~33쪽, 전체 7쪽
주제분류
복합학 > 과학기술학
파일형태
PDF
발행일자
2024.12.31
무료

구매일시로부터 72시간 이내에 다운로드 가능합니다.
이 학술논문 정보는 (주)교보문고와 각 발행기관 사이에 저작물 이용 계약이 체결된 것으로, 교보문고를 통해 제공되고 있습니다.

1:1 문의
논문 표지

국문 초록

Various techniques are being researched to effectively detect forest fires. Among them, techniques using object detection models can monitor forest fires over wide areas 24 hours a day. However, detecting forest fires early with traditional object detection models is a very challenging task. While they show decent accuracy for thick smoke and large fires, they show low accuracy for faint smoke and small fires, and frequently generate false positives for lights that are like fires. In this paper, to solve these problems, we focus on leveraging local characteristics such as contours and textures of fire and smoke, which are crucial for accurate detection. Based on this approach, we propose EDAM (Edge driven Attention Module) that performs enhancement by richly utilizing contour and texture information of fire and smoke. EDAM extracts important edge information to generate feature maps with emphasized contour and texture information, and based on this map, performs Attention Mechanism to emphasize key characteristics of smoke and fire. Through this mechanism, the overall model performance was improved, with APsincreasing from 0.154 to 0.204 and AP0.5 from 0.779 to 0.784, resulting in a significant improvement in APsvalue to 32.47%. In practice, the model applying this technique showed excellent inference speed while greatly improving detection performance for small objects compared to existing models and reduced false positive rates for building and street light illumination in nighttime environments that are easily mistaken for fire.

영문 초록

목차

1. Introduction
2. Related Works
3. Proposed Method
4. Result
5. Conclusions
References

키워드

해당간행물 수록 논문

참고문헌

교보eBook 첫 방문을 환영 합니다!

신규가입 혜택 지급이 완료 되었습니다.

바로 사용 가능한 교보e캐시 1,000원 (유효기간 7일)
지금 바로 교보eBook의 다양한 콘텐츠를 이용해 보세요!

교보e캐시 1,000원
TOP
인용하기
APA

Sehun KIM,Kyeongseok JANG,Dongwoo LEE,Seungwon CHO,Seunghyun LEE,Kwangchul SON. (2024).Learnable Sobel Filter and Attention-based Deep Learning Framework for Early Forest Fire Detection. 인공지능연구, 12 (4), 27-33

MLA

Sehun KIM,Kyeongseok JANG,Dongwoo LEE,Seungwon CHO,Seunghyun LEE,Kwangchul SON. "Learnable Sobel Filter and Attention-based Deep Learning Framework for Early Forest Fire Detection." 인공지능연구, 12.4(2024): 27-33

결제완료
e캐시 원 결제 계속 하시겠습니까?
교보 e캐시 간편 결제