본문 바로가기

추천 검색어

실시간 인기 검색어

학술논문

A Study on Improving Pressure Sensor Calibration Based on Multiple Calibration Points and Auto Target Setting

이용수 0

영문명
발행기관
한국인공지능학회
저자명
Jonghyun OH Jae-Yong HWANG Tumenbat TENGIS Woo-Seong JUNG
간행물 정보
『인공지능연구』Vol.12 No. 4, 35~42쪽, 전체 8쪽
주제분류
복합학 > 과학기술학
파일형태
PDF
발행일자
2024.12.31
무료

구매일시로부터 72시간 이내에 다운로드 가능합니다.
이 학술논문 정보는 (주)교보문고와 각 발행기관 사이에 저작물 이용 계약이 체결된 것으로, 교보문고를 통해 제공되고 있습니다.

1:1 문의
논문 표지

국문 초록

Pressure sensors are essential equipment for precise measurements in industrial and research fields, requiring calibration and target value setting for each sample to ensure high accuracy. This study proposes an automated target value prediction method based on a polynomial regression model to enhance pressure sensor accuracy and evaluates its effectiveness. Experiments were conducted over a pressure range of 0 to 45 bar and a temperature range of -5°C to 60°C. By expanding the calibration points from the previous two to four, linearity error was improved from 0.380% to 0.116%. In the conventional method, theoretical output values were manually calculated based on LDO voltage, and target values were set accordingly. However, this study employed a method that uses Polynomial Features (degree=2) transformation followed by a Linear Regression model to automatically predict target values. This approach allowed samples to more precisely follow the target voltage. This study demonstrates that an automated target value setting with multiple calibration points can contribute to improving the accuracy of pressure sensor measurements.

영문 초록

목차

1. Introduction
2. Literature Review
3. Research Methods
4. Results and Discussion
5. Conclusions
References

키워드

해당간행물 수록 논문

참고문헌

이벤트
  • [sam] 12주년 이벤트_우측하단윙
  • 우측윙_2025 1학기 대학교재전
01 / 02
TOP