본문 바로가기

추천 검색어

실시간 인기 검색어

학술논문

Study on Fault Diagnosis and Data Processing Techniques for Substrate Transfer Robots Using Vibration Sensor Data

이용수 0

영문명
Study on Fault Diagnosis and Data Processing Techniques for Substrate Transfer Robots Using Vibration Sensor Data
발행기관
한국마이크로전자및패키징학회
저자명
MD Saiful Islam Mi-Jin Kim Kyo-Mun Ku Hyo-Young Kim Kihyun Kim
간행물 정보
『마이크로전자 및 패키징학회지』제31권 제2호, 45~53쪽, 전체 9쪽
주제분류
공학 > 산업공학
파일형태
PDF
발행일자
2024.06.30
4,000

구매일시로부터 72시간 이내에 다운로드 가능합니다.
이 학술논문 정보는 (주)교보문고와 각 발행기관 사이에 저작물 이용 계약이 체결된 것으로, 교보문고를 통해 제공되고 있습니다.

1:1 문의
논문 표지

국문 초록

The maintenance of semiconductor equipment is crucial for the continuous growth of the semiconductor market. System management is imperative given the anticipated increase in the capacity and complexity of industrial equipment. Ensuring optimal operation of manufacturing processes is essential to maintaining a steady supply of numerous parts. Particularly, monitoring the status of substrate transfer robots, which play a central role in these processes, is crucial. Diagnosing failures of their major components is vital for preventive maintenance. Fault diagnosis methods can be broadly categorized into physics-based and data-driven approaches. This study focuses on data-driven fault diagnosis methods due to the limitations of physics-based approaches. We propose a methodology for data acquisition and preprocessing for robot fault diagnosis. Data is gathered from vibration sensors, and the data preprocessing method is applied to the vibration signals. Subsequently, the dataset is trained using Gradient Tree-based XGBoost machine learning classification algorithms. The effectiveness of the proposed model is validated through performance evaluation metrics, including accuracy, F1 score, and confusion matrix. The XGBoost classifiers achieve an accuracy of approximately 92.76% and an equivalent F1 score. ROC curves indicate exceptional performance in class discrimination, with 100% discrimination for the normal class and 98% discrimination for abnormal classes.

영문 초록

목차

1. Introduction
2. Robot Component Fault Diagnosis Testbed
3. Experimental Methods and Data Acquisition System
4. Raw Data Processing and Visualization
5. Algorithms for Fault Diagnosis
6. Conclusion
Acknowledgments
References

키워드

해당간행물 수록 논문

참고문헌

교보eBook 첫 방문을 환영 합니다!

신규가입 혜택 지급이 완료 되었습니다.

바로 사용 가능한 교보e캐시 1,000원 (유효기간 7일)
지금 바로 교보eBook의 다양한 콘텐츠를 이용해 보세요!

교보e캐시 1,000원
TOP
인용하기
APA

MD Saiful Islam,Mi-Jin Kim,Kyo-Mun Ku,Hyo-Young Kim,Kihyun Kim. (2024).Study on Fault Diagnosis and Data Processing Techniques for Substrate Transfer Robots Using Vibration Sensor Data. 마이크로전자 및 패키징학회지, 31 (2), 45-53

MLA

MD Saiful Islam,Mi-Jin Kim,Kyo-Mun Ku,Hyo-Young Kim,Kihyun Kim. "Study on Fault Diagnosis and Data Processing Techniques for Substrate Transfer Robots Using Vibration Sensor Data." 마이크로전자 및 패키징학회지, 31.2(2024): 45-53

결제완료
e캐시 원 결제 계속 하시겠습니까?
교보 e캐시 간편 결제