학술논문
fMRI 데이터를 이용한 알츠하이머 진행상태 분류
이용수 63
- 영문명
- Alzheimer progression classification using fMRI data
- 발행기관
- 한국스마트미디어학회
- 저자명
- 노주현(Ju Hyeon Noh) 양희덕(Hee-Deok Yang)
- 간행물 정보
- 『스마트미디어저널』Vol13, No.4, 86~93쪽, 전체 8쪽
- 주제분류
- 공학 > 컴퓨터학
- 파일형태
- 발행일자
- 2024.04.30
4,000원
구매일시로부터 72시간 이내에 다운로드 가능합니다.
이 학술논문 정보는 (주)교보문고와 각 발행기관 사이에 저작물 이용 계약이 체결된 것으로, 교보문고를 통해 제공되고 있습니다.
국문 초록
기능적 자기 공명영상(functional magnetic resonance imaging;fMRI)의 발전은 뇌 기능의 매핑, 휴식 상태에서 뇌 네트워크의 이해에 상당한 기여를 하였다. 본 논문은 알츠하이머의 진행상태를 분류하기 위해 CNN-LSTM 기반의 분류 모델을 제안한다. 첫 번째로 특징 추출 이전 fMRI 데이터에서 잡음을 제거하기 위해 4단계의 전처리를 수행한다. 두 번째, 전처리가 끝나면 U-Net 구조를 활용하여 공간적 특징을 추출한다. 세 번째, 추출된 공간적 특징은 LSTM을 활용하여 시간적 특징을 추출하여 최종적으로 분류하는 과정을 거친다. 실험은 데이터의 시간차원을 조절하여 진행하였다. 5-fold 교차 검증을 사용하여 평균 96.4%의 정확도를 달성하였고 이러한 결과는 제안된 방법이 fMRI 데이터를 분석하여 알츠하이머의 진행을 식별하는데 높은 잠재력을 가지고 있음을 보여준다.
영문 초록
The development of functional magnetic resonance imaging (fMRI) has significantly contributed to mapping brain functions and understanding brain networks during rest. This paper proposes a CNN-LSTM-based classification model to classify the progression stages of Alzheimer's disease. Firstly, four preprocessing steps are performed to remove noise from the fMRI data before feature extraction. Secondly, the U-Net architecture is utilized to extract spatial features once preprocessing is completed. Thirdly, the extracted spatial features undergo LSTM processing to extract temporal features, ultimately leading to classification. Experiments were conducted by adjusting the temporal dimension of the data. Using 5-fold cross-validation, an average accuracy of 96.4% was achieved, indicating that the proposed method has high potential for identifying the progression of Alzheimer's disease by analyzing fMRI data.
목차
Ⅰ. 서론
Ⅱ. 본론
Ⅲ. 결론
REFERENCES
해당간행물 수록 논문
- 착용형 증강현실 기반 체험형 콘텐츠 연구
- 스마트미디어저널 Vol13, No.4 목차
- Incorporating BERT-based NLP and Transformer for An Ensemble Model and its Application to Personal Credit Prediction
- RGB 이미지 기반 인간 동작 추정을 통한 투구 동작 분석
- 다중 센서 데이터를 활용한 오토인코더 기반 화재감지 모델
- DDPG 및 연합학습 기반 5G 네트워크 자원 할당과 트래픽 예측
- LSTM 오토인코더를 활용한 축산 환경 시계열 데이터의 이상치 탐지
- 패션 이미지 데이터를 활용한 딥러닝 기반의 의류속성 분류
- 도시 안전을 위한 블록체인 기반의 감시카메라 영상 관리 시스템 모델 및 설계 방법
- IoT 가상환경 플랫폼에서의 무결성 보장 시스템
- 안구 입력 시스템 기반의 화상키보드 키 배열 연구
- fMRI 데이터를 이용한 알츠하이머 진행상태 분류
- A study on a model of intercultural learning contents and methods
참고문헌
관련논문
공학 > 컴퓨터학분야 BEST
- 청소년들의 스마트폰 중독예방을 위한 이야기치료 집단상담 프로그램 개발
- 지도서비스를 이용한 위치 기반 관광 빅데이터의 시각화
- 광역 대중교통 접근성 향상이 관광 및 지역경제 활성화에 미치는 효과 분석
공학 > 컴퓨터학분야 NEW
- bOTP: 이더리움 블록체인의 최신 블록 해시를 활용한 이중-요소 기반의 예측 불가능한 OTP
- AES 암호화를 이용한 파일 보호 기법
- 실무 기반 3D 치아 스캔 데이터 세분화를 위한 딥러닝 모델 성능 평가: MeshSegNet과 DilatedToothSegNet 모델 활용
최근 이용한 논문
교보eBook 첫 방문을 환영 합니다!
신규가입 혜택 지급이 완료 되었습니다.
바로 사용 가능한 교보e캐시 1,000원 (유효기간 7일)
지금 바로 교보eBook의 다양한 콘텐츠를 이용해 보세요!