학술논문
이미지 메타 정보 기반 한국인 표정 감정 인식
이용수 58
- 영문명
- Korean Facial Expression Emotion Recognition based on Image Meta Information
- 발행기관
- 한국스마트미디어학회
- 저자명
- 문형주(Hyeong Ju Moon) 임명진(Myung Jin Lim) 김은희(Eun Hee Kim) 신주현(Ju Hyun Shin)
- 간행물 정보
- 『스마트미디어저널』Vol13, No.3, 9~17쪽, 전체 9쪽
- 주제분류
- 공학 > 컴퓨터학
- 파일형태
- 발행일자
- 2024.03.29
4,000원
구매일시로부터 72시간 이내에 다운로드 가능합니다.
이 학술논문 정보는 (주)교보문고와 각 발행기관 사이에 저작물 이용 계약이 체결된 것으로, 교보문고를 통해 제공되고 있습니다.

국문 초록
최근 팬데믹의 영향과 ICT 기술의 발전으로 인해 비대면·무인 시스템의 활용이 확대되고 있으며, 비대면 상황에서 의사소통은 감정을 이해하는 것이 매우 중요하다. 감정을 이해하기 위해서는 다양한 표정에 대한 감정 인식 방법이 필요함에 따라 이미지 데이터에서 표정 감정 인식 개선을 위한 인공지능 기반 연구가 진행되고 있다. 하지만 기존의 표정 감정 인식 연구는 정확도 향상을 위해 대량의 데이터를 활용하기 때문에 높은 컴퓨팅 파워와 많은 학습 시간이 필요하다. 본 논문에서는 이러한 한계점을 개선하기 위해 소량 데이터로도 표정 감정 인식이 가능한 방법으로 이미지 메타 정보인 연령과 성별을 활용한 표정 감정 인식 방법을 제안한다. 표정 감정 인식을 위해 원본 이미지 데이터에서 Yolo Face 모델을 활용하여 얼굴을 검출하였으며, 이미지 메타 정보를 기반으로 VGG 모델을 통해 연령과 성별을 분류한 다음 EfficientNet 모델을 활용하여 7가지 감정을 인식하였다. 메타 정보 기반 데이터 분류 모델과 전체 데이터로 학습한 모델을 비교한 결과 제안하는 데이터 분류 학습 모델의 정확도가 더 높았음을 확인하였다.
영문 초록
Due to the recent pandemic and the development of ICT technology, the use of non-face-to-face and unmanned systems is expanding, and it is very important to understand emotions in communication in non-face-to-face situations. As emotion recognition methods for various facial expressions are required to understand emotions, artificial intelligence-based research is being conducted to improve facial expression emotion recognition in image data. However, existing research on facial expression emotion recognition requires high computing power and a lot of learning time because it utilizes a large amount of data to improve accuracy. To improve these limitations, this paper proposes a method of recognizing facial expressions using age and gender, which are image meta information, as a method of recognizing facial expressions with even a small amount of data. For facial expression emotion recognition, a face was detected using the Yolo Face model from the original image data, and age and gender were classified through the VGG model based on image meta information, and then seven emotions were recognized using the EfficientNet model. The accuracy of the proposed data classification learning model was higher as a result of comparing the meta-information-based data classification model with the model trained with all data.
목차
Ⅰ. 서론
Ⅱ. 관련연구
Ⅲ. 메타 정보 기반 표정 감정 인식
Ⅳ. 실험 및 결과
Ⅴ. 결론
REFERENCES
해당간행물 수록 논문
- 스마트미디어저널 Vol13, No.3 목차
- 인공지능 기반의 자동화된 통합보안관제시스템 모델 연구
- GAN기반의 Semi Supervised Learning을 활용한 이미지 생성 및 분류
- 국내외 인공지능 반도체에 대한 연구 동향
- UGV에서 효율적인 노면 모니터링을 위한 퓨전 센서 시스템
- 피부 병변 분할을 위한 어텐션 기반 딥러닝 프레임워크
- 이미지 메타 정보 기반 한국인 표정 감정 인식
- A Study on Innovative Design Approaches for Implementing an Intelligent ICT-Based Smart Highway
참고문헌
관련논문
공학 > 컴퓨터학분야 BEST
- 지도서비스를 이용한 위치 기반 관광 빅데이터의 시각화
- 청소년들의 스마트폰 중독예방을 위한 이야기치료 집단상담 프로그램 개발
- 공서비스 공급 관점에서 살펴본 비의료 건강관리서비스 인증 시범사업과 의료민영화 논쟁
공학 > 컴퓨터학분야 NEW
- 스마트미디어저널 제14권 제2호 목차
- A Study on Dataset Development and Model Vulnerability to Backdoors
- Ransomware Detection Using Deep Q-Network and L2PGD Attack Analysis on a Custom Dataset
최근 이용한 논문
교보eBook 첫 방문을 환영 합니다!
신규가입 혜택 지급이 완료 되었습니다.
바로 사용 가능한 교보e캐시 1,000원 (유효기간 7일)
지금 바로 교보eBook의 다양한 콘텐츠를 이용해 보세요!
