본문 바로가기

추천 검색어

실시간 인기 검색어

학술논문

OpenPose기반 딥러닝을 이용한 운동동작분류 성능 비교

이용수 110

영문명
Performance Comparison for Exercise Motion classification using Deep Learing-based OpenPose
발행기관
한국스마트미디어학회
저자명
손남례 정민아
간행물 정보
『스마트미디어저널』Vol12, No.7, 59~67쪽, 전체 9쪽
주제분류
공학 > 컴퓨터학
파일형태
PDF
발행일자
2023.08.31
4,000

구매일시로부터 72시간 이내에 다운로드 가능합니다.
이 학술논문 정보는 (주)교보문고와 각 발행기관 사이에 저작물 이용 계약이 체결된 것으로, 교보문고를 통해 제공되고 있습니다.

1:1 문의
논문 표지

국문 초록

최근 인간의 자세와 행동을 추적하는 행동 분석 연구가 활발해지고 있다. 특히 2017년 CMU에서 개발한 오픈소스인 오픈포즈(OpenPose)는 사람의 외모와 행동을 추정하는 대표적인 방법이다. 오픈포즈는 사람의 키, 얼굴, 손 등의 신체부위를 실시간으로 감지하고 추정할 수 있어 스마트 헬스케어, 운 동 트레이닝, 보안시스템, 의료 등 다양한 분야에 적용될 수 있다. 본 논문에서는 헬스장에서 사용자들이 가장 많이 운동하는 Squat, Walk, Wave, Fall-down 4개 동작을 오픈포즈기반 딥러닝인 DNN과 CNN을 이용하여 운동 동작 분류 방법을 제안한다. 학습데이터는 녹화영상 및 실시간으로 카메라를 통해 사용자의 동작을 캡처해서 데이터 셋을 수집한다. 수집된 데이터 셋은 OpenPose을 이용하여 전처리과정을 진행하고, 전처리과정이 완료된 데이터 셋은 본 논문에서 제안한 DNN 및 CNN 모델 이용하여 운동 동작 분류를 학습한다. 제안한 모델에 대한 성능 오차는 MSE, RMSE, MAE를 사용한다. 성능 평가 결과, 제안한 DNN 모델 성능이 제안한 CNN 모델보다 우수한 것으로 나타났다.

영문 초록

Recently, research on behavior analysis tracking human posture and movement has been actively conducted. In particular, OpenPose, an open-source software developed by CMU in 2017, is a representative method for estimating human appearance and behavior. OpenPose can detect and estimate various body parts of a person, such as height, face, and hands in real-time, making it applicable to various fields such as smart healthcare, exercise training, security systems, and medical fields. In this paper, we propose a method for classifying four exercise movements - Squat, Walk, Wave, and Fall-down - which are most commonly performed by users in the gym, using OpenPose-based deep learning models, DNN and CNN. The training data is collected by capturing the user's movements through recorded videos and real-time camera captures. The colle cted dataset undergoes preprocessing using OpenPose. The preprocessed dataset is then used to train the proposed DNN and CNN models for exercise movement classification. The performance errors of the proposed models are evaluated using MSE, RMSE, and MAE. The performance evaluation results showed that the proposed DNN model outperformed the proposed CNN model.

목차

Ⅰ. 서론
Ⅱ. 관련연구
Ⅲ. 제안한 모델
Ⅳ. 실험환경 및 분석
Ⅴ. 결론 및 향후연구
REFERENCES

키워드

해당간행물 수록 논문

참고문헌

교보eBook 첫 방문을 환영 합니다!

신규가입 혜택 지급이 완료 되었습니다.

바로 사용 가능한 교보e캐시 1,000원 (유효기간 7일)
지금 바로 교보eBook의 다양한 콘텐츠를 이용해 보세요!

교보e캐시 1,000원
TOP
인용하기
APA

손남례,정민아. (2023).OpenPose기반 딥러닝을 이용한 운동동작분류 성능 비교. 스마트미디어저널, 12 (7), 59-67

MLA

손남례,정민아. "OpenPose기반 딥러닝을 이용한 운동동작분류 성능 비교." 스마트미디어저널, 12.7(2023): 59-67

결제완료
e캐시 원 결제 계속 하시겠습니까?
교보 e캐시 간편 결제