학술논문
The dimension of the space of stable maps to the relative Lagrangian Grassmannian over a curve
이용수 3
- 영문명
- The dimension of the space of stable maps to the relative Lagrangian Grassmannian over a curve
- 발행기관
- 충청수학회
- 저자명
- 정대웅
- 간행물 정보
- 『Journal of the Chungcheong Mathematical Society』Volume 36, No. 1, 1~8쪽, 전체 8쪽
- 주제분류
- 자연과학 > 자연과학일반
- 파일형태
- 발행일자
- 2023.02.28
4,000원
구매일시로부터 72시간 이내에 다운로드 가능합니다.
이 학술논문 정보는 (주)교보문고와 각 발행기관 사이에 저작물 이용 계약이 체결된 것으로, 교보문고를 통해 제공되고 있습니다.

국문 초록
영문 초록
'Let $C$ be a smooth projective curve and $W$ a symplectic bundle over $C$ of degree $w.$ Let $\pi:\LGW \rightarrow C$ be the relative Lagrangian Grassmannian over $C$ and $\SdW$ be the space of Lagrangian subbundles of degree $w-d$. Then Kontsevich's space $\ocM_g(\LGW,\beta_d)$ of stable maps to $\LGW$ is a compactification of $\SdW$. In this article, we give an upper bound on the dimension of $\ocM_g(\LGW,\beta_d)$, which is an analogue of a result in \cite{PR} for the relative Lagrangian Grassmannian.
목차
1. Backgrounds
2. Main theorem and its proof
References
해당간행물 수록 논문
- Asymptotical behaviors of a diffusive predator-prey system with ratio-dependent functional response and maturation delay
- An Overlapping Domain Decomposition Method with a Vertex-based Coarse Space for Raviart--Thomas Vector Fields
- A note on weak excluded middle law
- A STUDY OF DEFECTS IN LIQUID CRYSTALS ON A PUNCTURED DISK
- The dimension of the space of stable maps to the relative Lagrangian Grassmannian over a curve
- Generalized intertwining linear operators with isometries
참고문헌
관련논문
자연과학 > 자연과학일반분야 NEW
- CONTINUITY OF INTERTWINING LINEAR OPERATORS WITH SHIFT OPERATORS ON Lp(R)
- SPECTRUM OF LINE ARRANGEMENTS WITH MULTIPLICITIES: A COMBINATORIAL APPROACH VIA LATTICE POINT ENUMERATION
- ENERGY DECAY OF SOLUTIONS FOR THE VISCOELASTIC NONLINEAR EQUATION WITH A INTERNAL TIME-VARYING DELAY TERM AND BOUNDARIES RELATING THE KIRCHHOFF TYPE COEFFICIENT
최근 이용한 논문
교보eBook 첫 방문을 환영 합니다!
신규가입 혜택 지급이 완료 되었습니다.
바로 사용 가능한 교보e캐시 1,000원 (유효기간 7일)
지금 바로 교보eBook의 다양한 콘텐츠를 이용해 보세요!
