본문 바로가기

추천 검색어

실시간 인기 검색어

학술논문

심층학습 알고리즘을 이용한 보청기의 음향궤환 및 잡음 제거

이용수 63

영문명
Acoustic Feedback and Noise Cancellation of Hearing Aids by Deep Learning Algorithm
발행기관
한국전자통신학회
저자명
이행우(Haeng-Woo Lee)
간행물 정보
『한국전자통신학회 논문지』제14권 제6호, 1249~1256쪽, 전체 8쪽
주제분류
공학 > 전자/정보통신공학
파일형태
PDF
발행일자
2019.12.30
4,000

구매일시로부터 72시간 이내에 다운로드 가능합니다.
이 학술논문 정보는 (주)교보문고와 각 발행기관 사이에 저작물 이용 계약이 체결된 것으로, 교보문고를 통해 제공되고 있습니다.

1:1 문의
논문 표지

국문 초록

본 논문에서는 보청기의 음향궤환 및 잡음을 제거하기 위한 새로운 알고리즘을 제안한다. 이 알고리즘은 기존의 FIR 구조를 이용하는 대신 신경망 적응예측필터를 이용한 심층학습 알고리즘으로 궤환 및 잡음제거 성능을 향상시킨다. 먼저 궤환제거기가 마이크 신호에서 궤환신호를 제거하고, 이어서 Wiener 필터기법을 이용 하여 잡음을 제거한다. 잡음 제거는 음성신호가 가진 주기적 성질에 따라 선형예측모델을 이용하여 잡음이 포함된 음성신호로부터 음성을 추정해내는 것이다. 한 루프 안에 포함된 두 적응 시스템의 안정적 수렴을 보장 하기 위해 궤환제거기 및 잡음제거기의 계수 업데이트를 분리하여 실시하며 제거 후 생성된 잔차신호를 이용 하여 수렴시키는 과정을 진행한다. 본 연구에서 제안한 궤환 및 잡음제거기의 성능을 검증하기 위하여 시뮬레 이션 프로그램을 작성하고 모의실험을 수행하였다. 실험 결과, 제안한 심층학습 알고리즘을 사용하면 기존의 FIR 구조를 사용하는 경우보다 궤환제거기에서 약 10 dB의 SFR(: Signal to Feedback Ratio), 잡음제거기에서약 3 dB의 SNRE(: Signal to Noise Ratio Enhancement) 개선효과를 얻을 수 있는 것으로 확인되었다.

영문 초록

In this paper, we propose a new algorithm to remove acoustic feedback and noise in hearing aids. Instead of using the conventional FIR structure, this algorithm is a deep learning algorithm using neural network adaptive prediction filter to improve the feedback and noise reduction performance. The feedback canceller first removes the feedback signal from the microphone signal and then removes the noise using the Wiener filter technique. Noise elimination is to estimate the speech from the speech signal containing noise using the linear prediction model according to the periodicity of the speech signal. In order to ensure stable convergence of two adaptive systems in a loop, coefficient updates of the feedback canceller and noise canceller are separated and converged using the residual error signal generated after the cancellation. In order to verify the performance of the feedback and noise canceller proposed in this study, a simulation program was written and simulated. Experimental results show that the proposed deep learning algorithm improves the signal to feedback ratio(: SFR) of about 10 dB in the feedback canceller and the signal to noise ratio enhancement(: SNRE) of about 3 dB in the noise canceller than the conventional FIR structure.

목차

Ⅰ. 서 론
Ⅱ. 다층 신경망의 학습 알고리즘
Ⅲ. 신경망 필터구조의 궤환 및 잡음 제거 알고리즘
Ⅳ. 모의실험 및 분석
Ⅴ. 결 론

키워드

해당간행물 수록 논문

참고문헌

교보eBook 첫 방문을 환영 합니다!

신규가입 혜택 지급이 완료 되었습니다.

바로 사용 가능한 교보e캐시 1,000원 (유효기간 7일)
지금 바로 교보eBook의 다양한 콘텐츠를 이용해 보세요!

교보e캐시 1,000원
TOP
인용하기
APA

이행우(Haeng-Woo Lee). (2019).심층학습 알고리즘을 이용한 보청기의 음향궤환 및 잡음 제거. 한국전자통신학회 논문지, 14 (6), 1249-1256

MLA

이행우(Haeng-Woo Lee). "심층학습 알고리즘을 이용한 보청기의 음향궤환 및 잡음 제거." 한국전자통신학회 논문지, 14.6(2019): 1249-1256

결제완료
e캐시 원 결제 계속 하시겠습니까?
교보 e캐시 간편 결제