본문 바로가기

추천 검색어

실시간 인기 검색어

학술논문

한국어 생의학 개체명 인식 성능 비교와 오류 분석

이용수 48

영문명
Performance Comparison and Error Analysis of Korean Bio-medical Named Entity Recognition
발행기관
한국전자통신학회
저자명
이재홍(Jae-Hong Lee)
간행물 정보
『한국전자통신학회 논문지』제19권 제4호, 701~708쪽, 전체 8쪽
주제분류
공학 > 전자/정보통신공학
파일형태
PDF
발행일자
2024.08.31
4,000

구매일시로부터 72시간 이내에 다운로드 가능합니다.
이 학술논문 정보는 (주)교보문고와 각 발행기관 사이에 저작물 이용 계약이 체결된 것으로, 교보문고를 통해 제공되고 있습니다.

1:1 문의
논문 표지

국문 초록

딥러닝 분야에서 트랜스포머 아키텍쳐의 출현은 자연어 처리 연구가 획기적인 발전을 가져왔다. 개체명 인식은 자연어 처리의 한 분야로 정보 검색과 같은 태스크에 중요한 연구 분야이다. 생의학 분야에서도 그 중요성이 강조되나 학습용 한국어 생의학 말뭉치의 부족으로 AI를 활용한 한국어 임상 연구 발전에 제약이 되고 있다. 본 연구에서는 한국어 생의학 개체명 인식을 위해 새로운 생의학 말뭉치를 구축하고 대용량 한국어 말뭉치로 사전 학습된 언어 모델들을 선정하여 전이 학습시켰다. F1-score로 선정된 언어 모델의 개체명 인식 성능과 태그별 인식률을 비교하고 오류 분석을 하였다. 인식 성능에서는 KlueRoBERTa가 상대적인 좋은 성능을 보였다. 태깅 과정의 오류 분석 결과 Disease의 인식 성능은 우수하나 상대적으로 Body와 Treatment는 낮았다. 이는 문맥에 기반하여 제대로 개체명을 분류하지 못하는 과분할과 미분할로 인한 것으로, 잘못된 태깅들을 보완하기 위해서는 보다 정밀한 형태소 분석기와 풍부한 어휘사전 구축이 선행되어야 할 것이다.

영문 초록

The advent of transformer architectures in deep learning has been a major breakthrough in natural language processing research. Object name recognition is a branch of natural language processing and is an important research area for tasks such as information retrieval. It is also important in the biomedical field, but the lack of Korean biomedical corpora for training has limited the development of Korean clinical research using AI. In this study, we built a new biomedical corpus for Korean biomedical entity name recognition and selected language models pre-trained on a large Korean corpus for transfer learning. We compared the name recognition performance of the selected language models by F1-score and the recognition rate by tag, and analyzed the errors. In terms of recognition performance, KlueRoBERTa showed relatively good performance. The error analysis of the tagging process shows that the recognition performance of Disease is excellent, but Body and Treatment are relatively low. This is due to over-segmentation and under-segmentation that fails to properly categorize entity names based on context, and it will be necessary to build a more precise morphological analyzer and a rich lexicon to compensate for the incorrect tagging.

목차

Ⅰ. 서 론
Ⅱ. NER 개념과 관련 연구
Ⅲ. 인식 성능 평가와 오류 분석
Ⅳ. 결론
References

키워드

해당간행물 수록 논문

참고문헌

교보eBook 첫 방문을 환영 합니다!

신규가입 혜택 지급이 완료 되었습니다.

바로 사용 가능한 교보e캐시 1,000원 (유효기간 7일)
지금 바로 교보eBook의 다양한 콘텐츠를 이용해 보세요!

교보e캐시 1,000원
TOP
인용하기
APA

이재홍(Jae-Hong Lee). (2024).한국어 생의학 개체명 인식 성능 비교와 오류 분석. 한국전자통신학회 논문지, 19 (4), 701-708

MLA

이재홍(Jae-Hong Lee). "한국어 생의학 개체명 인식 성능 비교와 오류 분석." 한국전자통신학회 논문지, 19.4(2024): 701-708

결제완료
e캐시 원 결제 계속 하시겠습니까?
교보 e캐시 간편 결제