본문 바로가기

추천 검색어

실시간 인기 검색어

학술논문

기계학습을 이용한 의료폐기물 소각로의 COVID-19 전-후 운전특성 분석

이용수 37

영문명
Analysis of operation characteristics before and after COVID-19 of medical waste incinerator using machine learning
발행기관
한국환경에너지공학회
저자명
손권 윤진한 이정규 홍원석
간행물 정보
『환경에너지공학』제19권 제1호, 27~38쪽, 전체 12쪽
주제분류
공학 > 환경공학
파일형태
PDF
발행일자
2024.07.31
무료

구매일시로부터 72시간 이내에 다운로드 가능합니다.
이 학술논문 정보는 (주)교보문고와 각 발행기관 사이에 저작물 이용 계약이 체결된 것으로, 교보문고를 통해 제공되고 있습니다.

1:1 문의
논문 표지

국문 초록

In Korea, medical waste is placed in special containers and disposed of separately, and it is impossible to open it or analyze its calorific value before incineration. Due to these characteristics, difficulties are arising in the operation of incinerators exclusively for medical waste due to the characteristics of incinerators whose operating conditions are determined based on the calorific value of the waste. In addition, since incinerators require continuous optimization of operating conditions as equipment ages, operation optimization through prediction of operating conditions is necessary. In this study, the incinerator operation characteristics were analyzed using a Neural Network machine learning model using TMS data from a 20-ton/day commercial medical waste incinerator. In order to exclude abnormal operation conditions such as during the overhaul period, operation data was acquired at points where the combustion chamber temperature was above 850℃, and after learning this, correlation analysis between variables and accuracy of prediction data were analyzed. As a result of this study, it was confirmed that after COVID-19, a strong correlation occurred between variables related to combustion conditions (O2, exhaust gas flow rate, combustion chamber temperature, and combustion exhaust gas flow rate) that were not observed before COVID-19. In the before and after COVID-19 variable prediction results, it was confirmed that the exhaust gas flowrate prediction interval was expanded and the O2 concentration cluster formation trend changed significantly. In summary, it was confirmed that significant changes in incinerator operation characteristics occurred before and after the COVID-19 pandemic due to the high calorific value of COVID-19 medical waste and the same-day-discharge same-day incineration principle.

영문 초록

목차

1. 서론
2. 기계학습 알고리즘 설계
3. 의료폐기물 소각로의 COVID-19 전-후 운전특성 변화
4. 결론

키워드

해당간행물 수록 논문

참고문헌

교보eBook 첫 방문을 환영 합니다!

신규가입 혜택 지급이 완료 되었습니다.

바로 사용 가능한 교보e캐시 1,000원 (유효기간 7일)
지금 바로 교보eBook의 다양한 콘텐츠를 이용해 보세요!

교보e캐시 1,000원
TOP
인용하기
APA

손권,윤진한,이정규,홍원석. (2024).기계학습을 이용한 의료폐기물 소각로의 COVID-19 전-후 운전특성 분석. 환경에너지공학, 19 (1), 27-38

MLA

손권,윤진한,이정규,홍원석. "기계학습을 이용한 의료폐기물 소각로의 COVID-19 전-후 운전특성 분석." 환경에너지공학, 19.1(2024): 27-38

결제완료
e캐시 원 결제 계속 하시겠습니까?
교보 e캐시 간편 결제