본문 바로가기

추천 검색어

실시간 인기 검색어

학술논문

핵의학 팬텀 영상에서 초매개변수 변화에 따른 YOLOv5 모델의 성능평가

이용수 13

영문명
Performance Evaluation of YOLOv5 Model according to Various Hyper-parameters in Nuclear Medicine Phantom Images
발행기관
한국방사선학회
저자명
이민관(Min-Gwan Lee) 박찬록(Chanrok Park)
간행물 정보
『한국방사선학회 논문지』제18권 제1호, 21~26쪽, 전체 6쪽
주제분류
공학 > 기타공학
파일형태
PDF
발행일자
2024.02.28
4,000

구매일시로부터 72시간 이내에 다운로드 가능합니다.
이 학술논문 정보는 (주)교보문고와 각 발행기관 사이에 저작물 이용 계약이 체결된 것으로, 교보문고를 통해 제공되고 있습니다.

1:1 문의
논문 표지

국문 초록

You only look once v5 (YOLOv5)는 객체 검출 과정에 우수한 성능을 보이고 있는 딥러닝 모델 중 하나다. 그러므로 본 연구의 목적은 양전차방출단층촬영 팬텀 영상에서 다양한 하이퍼 파라미터에 따른 YOLOv5 모델의 성능을 평가했다. 데이터 세트는 500장의 QIN PET segmentation challenge로부터 제공되는 오픈소스를 사용하였으며, LabelImg 소프트웨어를 사용하여 경계박스를 설정했다. 학습의 적용된 하이퍼파라미터는 최적화 함수 SDG, Adam, AdamW, 활성화 함수 SiLu, LeakyRelu, Mish, Hardwish와 YOLOv5 모델 크기에 따라 nano, small, large, xlarge다. 학습성능을 평가하기 위한 정량적 분석방법으로 Intersection of union (IOU)를 사용하였다. 결과적으로, AdmaW의 최적화 함수, Hardwish의 활성화 함수, nano 크기에서 우수한 객체 검출성능을 보였다. 결론적으로 핵의학 영상에서의 객체 검출 성능에 대한 YOLOV5 모델의 유용성을 확인하였다.

영문 초록

The one of the famous deep learning models for object detection task is you only look once version 5 (YOLOv5) framework based on the one stage architecture. In addition, YOLOv5 model indicated high performance for accurate lesion detection using the bottleneck CSP layer and skip connection function. The purpose of this study was to evaluate the performance of YOLOv5 framework according to various hyperparameters in position emission tomogrpahy (PET) phantom images. The dataset was obtained from QIN PET segmentation challenge in 500 slices. We set the bounding box to generate ground truth dataset using labelImg software. The hyperparameters for network train were applied by changing optimization function (SDG, Adam, and AdamW), activation function (SiLU, LeakyRelu, Mish, and Hardwish), and YOLOv5 model size (nano, small, large, and xlarge). The intersection over union (IOU) method was used for performance evaluation. As a results, the condition of outstanding performance is to apply AdamW, Hardwish, and nano size for optimization function, activation function and model version, respectively. In conclusion, we confirmed the usefulness of YOLOv5 network for object detection performance in nuclear medicine images.

목차

Ⅰ. INTRODUCTION
Ⅱ. MATERIAL AND METHODS
Ⅲ. RESULT
Ⅳ. DISCUSSION
Ⅴ. CONCLUSION
Acknowledgement
Reference

키워드

해당간행물 수록 논문

참고문헌

교보eBook 첫 방문을 환영 합니다!

신규가입 혜택 지급이 완료 되었습니다.

바로 사용 가능한 교보e캐시 1,000원 (유효기간 7일)
지금 바로 교보eBook의 다양한 콘텐츠를 이용해 보세요!

교보e캐시 1,000원
TOP
인용하기
APA

이민관(Min-Gwan Lee),박찬록(Chanrok Park). (2024).핵의학 팬텀 영상에서 초매개변수 변화에 따른 YOLOv5 모델의 성능평가. 한국방사선학회 논문지, 18 (1), 21-26

MLA

이민관(Min-Gwan Lee),박찬록(Chanrok Park). "핵의학 팬텀 영상에서 초매개변수 변화에 따른 YOLOv5 모델의 성능평가." 한국방사선학회 논문지, 18.1(2024): 21-26

결제완료
e캐시 원 결제 계속 하시겠습니까?
교보 e캐시 간편 결제